Т-101. Орган слуха— высокочувствительный приемник и анализатор сложных звуковых сигналов. Наземная станция метро — это лишь небольшая часть того, что мы называем словом «метро», главные же его сооружения — прекрасные дворцы-станции, бесконечные туннели, эскалаторы, поезда, системы электроснабжения и связи — все это скрыто под землей. Вот так и то, что мы привыкли называть ухом, это не более чем своего рода наземная станция метро. Главные же части нашего звукоприемника — среднее и внутреннее ухо — нам не видны, они спрятаны глубоко и защищены костями черепа (Р-65),
Попав в ушную раковину, звуковые волны пробегают извилистый слуховой проход (его длина около 2,5 см) и, попав на барабанную перепонку, приводят ее в движение (так же, как звук заставлял двигаться струну-приемник; Р-63). Движение барабанной перепонки через систему косточек (молоточек, наковальня, стремечко, общий вес около 0,05 г) передается в самый главный отдел внутреннего уха — в улитку. Такое название эта «деталь» получила потому, что у млекопитающих она похожа на спиралевидный домик улитки (постепенно сужающаяся трубка длиной около 3 см, закрученная на 2,7 оборота). У животных, которые стоят на низших ступенях развития, улитки еще нет, ее место занимает более простая «деталь», похожая на изогнутую луковицу.
Улитка — это конечная станция, куда поступают механические колебания от слуховых косточек. Здесь, в улитке, эти колебания преобразуются в серии нервных импульсов, которые по нервным волокнам поступают в слуховой нерв, а по нему уже прямо в слуховые отделы головного мозга. «Деталь» внутреннего уха, где происходят эти преобразования, по имени одного из первых ее исследователей А. Корти, получила название орган Корти или кортиев орган.
Кортиев орган находится в спиральном лабиринте улитки и чем-то напоминает спиралевидный и. плоский слоеный пирог. Нижний слой, основание «пирога», — лента основной мембраны, сотканная из двадцати пяти тысяч тонких поперечных нитей, которые часто сравнивают со струнами рояля или арфы. По мере того как основная мембрана расширяется, нити-струны становятся длиннее: у основания улитки, в районе овального окна, к которому примыкает стремечко, длина нитей — около 0,1 мм, а у вершины улитки — около 0,5 мм.
Изучение органов слуха началось давно, но и сегодня в этой области очень много неясного. Так, в частности, пока не удалось проследить все стадии преобразования звуковых колебаний в нервный импульс. Не очень ясно, каким именно образом кортиев орган анализирует форму кривой сложного звука, хотя установлено, что именно он разделяет сложный звуковой сигнал на синусоидальные составляющие.
Долгое время широким признанием пользовалась резонансная теория

P-64

слуха, которую около ста лет назад разработал блестящий физик и физиолог Герман Гельмгольц. Основную идею этой теории можно проиллюстрировать простым опытом. Откройте крышку рояля, нажмите правую педаль и с большими паузами пропойте над струнами несколько нот. Вы услышите, как рояль вторит пению, причем после разных нот звучат разные струны. Происходит это потому, что каждая струна резонирует в основном лишь на одной синусоидальной составляющей сложного звука. И поэтому для разных звуков, то есть для разных спектров, набор откликающихся струн будет различным.
Гельмгольц считал, что наше ухо определяет спектр сложных звуков таким же способом, а роль резонирующих струн он отводил нитям основной мембраны: они имеют разную длину, а значит, разные резонансные частоты (Т-92). Эксперименты, казалось бы, полностью подтверждали это предположение. Так, например, было установлено, что при повреждении вершины улитки, где находятся более длинные, то есть более низкочастотные, волокна, подопытные животные перестают слышать только низкочастотные звуки. А повреждение основания улитки приводит к потере слуха в области высших частот. В пользу резонансной теории говорили и некоторые другие эксперименты.
И все же под давлением фактов, особенно полученных в последнее время, от простой и удобной модели уха-рояля пришлось отказаться. Вот лишь одно из непреодолимых затруднений резонансной теории: для того чтобы перекрыть весь диапазон слышимых частот, натяжение самых длинных и самых коротких нитей основной мембраны должно различаться в десять тысяч раз, а на практике такой огромной разницы не обнаружено. Тот факт, что кортиев орган разделяет сложный звук на синусоидальные составляющие, не вызывает сомнений, но как именно это происходит, еще предстоит выяснить.
Самые низкие и самые высокие слышимые частоты у разных людей разные, но в среднем можно считать, что нижняя граница слышимых звуков — это 16—20 Гц, а верхняя— 18—22 кГц (18 000—22 000 Гц). Кстати, верхняя граница сильно смещается с возрастом, и нередко пожилые люди слышат звуки лишь до 10—12 кГц. В то же время встречаются, хотя и очень редко, рекордсмены — люди, которые слышат частоты вплоть до 28—30 кГц. Официальной границей слышимых звуков, как правило, считают 20 Гц—20 кГц. Более низкочастотные неслышимые звуки — это инфразвук, более высокочастотные — ультразвук. То, что мы не слышим ультразвуки и инфразвуки, разумеется, никак не влияет на их природу. Это точно такие же, как и слышимый звук, чередующиеся волны сжатий и разрежений воздуха или какой-либо иной среды.
Одна из самых замечательных особенностей нашего слуха — огромный диапазон улавливаемых звуковых давлений. Самый слабый звук, который мы слышим, тот, что находится на пороге слышимости, несет всего 10-12 Вт/м2. Самый сильный звук несет 10 Вт/м , он находится уже на пороге нестерпимой боли или даже повреждения тонких механизмов слуха. Таким образом наш слух воспринимает звуки, мощность которых различается в 10 000 000 000 000 раз. Если бы удалось построить весы с таким рабочим диапазоном, то они одинаково хорошо взвешивали бы и каплю воды, и огромный океанский корабль массой в десятки тысяч тонн.
Особенно поражает высокая чувствительность нашего слуха, его способность улавливать очень слабые звуки. Судите сами: на пороге слышимости общее давление на барабанную перепонку не превышает 0,000 000 3 г; амплитуда ее колебаний измеряется миллионными долями сантиметра; амплитуда колебаний основной мембраны оказывается в несколько раз меньше, чем размеры самого маленького атома — атома водорода.
Читать следующую теорию
Вернуться на предыдущую

значёк