Т-30. Единица электрического заряда —- кулон, величины тока — ампер, электродвижущей силы — вольт, сопротивления — ом, С метром дело было просто — отмерил меридиан, разделил на 40 000 000, и метротов. А где взять единицу электрических свойств, электрического заряда? Как практически получить такой единичный заряд? Или, по крайней мере, как его представить себе?
 Единицу электрического заряда лучше всего взять в атоме. Там находятся частицы, у которых имеются самые минимальные порции электрических свойств, причем электрические свойства этих частиц, их электрический заряд, всегда одинаковы, всегда стабильны. Вы, конечно, вспомнили: это протон, частица с минимальным положительным зарядом, и электрон, частица с точно таким же по величине, но уже отрицательным зарядом (Т-17).
 Заряд электрона (или, что количественно то же самое, заряд протона) — очень удобная единица заряда. Но очень маленькая. Пользоваться ею на практике было бы так же неудобно, как, скажем, измерять в миллиметрах расстояние между планетами. Поэтому единица заряда выбрана значительно более крупная — единицей признан электрический заряд, равный суммарному заряду 6 280 000 000 000 000 000 электронов (сокращенная запись — 6,28 * 1018 ). Эта единица, вобравшая в себя около 6 миллиардов миллиардов зарядов электрона, получила название кулон.
Имея единицу заряда, легко ввести и другие недостающие нам электрические единицы. Единица силы тока (величины тока, тока) —ампер — получается так: если через поперечное сечение проводника за одну секунду проходит суммарный электрический заряд в 1 кулон, то ток в таком проводнике равен 1 амперу. Теперь представим себе, что движение электронов проходит более вяло, и в результате за секунду через сечение проводника проходит уже не кулон, а полкулона, то есть не 6, а 3 миллиарда миллиардов электронов (или, что то же самое, 6 миллиардов миллиардов электронов проходит за 2 секунды). В этом случае ток в цепи — 0,5 ампера.
Здесь уместно вспомнить, что в некоторых проводниках под действием электрических сил движутся и создают ток не только свободные электроны, но еще и свободные положительные ионы (Р-6). Причем если электроны двигаются от выталкивающего их «минуса» к притягивающему их «плюсу», то положительные ионы идут в противоположном направлении: «плюс» их выталкивает, «минус», наоборот, притягивает. Как же в этом случае определяется величина тока? Какие учитываются заряды?
На первый взгляд может показаться, что в счет нужно принимать разность между положительными и отрицательными зарядами. Потому что одни идут туда, другие — обратно, и какое движение преобладает, то в итоге и создает ток.
Такая арифметика, однако же, несправедлива, а значит, и неверна. Потому что, независимо от того, в какую сторону идут заряды и какие это заряды — электроны или положительные ионы, — они всегда работают.

И те и другие, к примеру, в процессе своего движения ударяют по атомам, вырабатывают тепло, свет. Поэтому, определяя ток в цепи, где движутся разные типы зарядов, нужно учитывать общее их количество, учитывать не разность, а сумму. Если по проводнику за 1 секунду в одну сторону прошло 6 миллиардов миллиардов электронов (1 кулон) и за то же время в другую сторону прошло столько же положительных однозарядных ионов (атомов с одним потерянным электроном), то ток в такой цепи составляет 2 ампера. Потому что всего через поперечное сечение проводника за 1 секунду прошел заряд в 2 кулона.
Следующая на очереди — единица электродвижущей силы вольт. Чтобы лучше понять, что она означает, можно в порядке шутки ввести аналогичную единицу, которая позволит оценить работоспособность мельничной плотины. Будем считать, что если литр воды, падая с этой плотины, может выполнять работу в 1 джоуль, то ее вододвижущая сила, то есть сокращенно ВДС плотины, составляет 1 мельник. А если тот же литр воды, падая вниз, наработает 5 джоулей, то ВДС плотины будет уже в 5 раз больше — 5 мельников. На эту характеристику, на ВДС, очень похожа наша электродвижущая сила — работа, которую может выполнить генератор, перемещая по цепи определенный электрический заряд (Т-28). Единица заряда у нас теперь есть — это кулон. Единица работы тоже есть— джоуль. Отсюда и выходит, что единица э.д.с. — вольт — это такая электродвижущая сила, при которой каждый заряд в 1 кулон, пройдя по цепи, совершит работу в 1 джоуль.
После введения вольта можно другими глазами посмотреть на уже знакомые нам генераторы, в частности на батарейку для карманного фонаря. Ее э.д.с. — около 4 вольт, а значит, каждый кулон зарядов, которые эта батарейка протолкнет по цепи, может выполнить работу в 4 джоуля. Это немало, когда дело касается механической работы: вспомните, что одного джоуля достаточно, чтобы поднять полстакана воды на метровую высоту. Но вот для тепловых работ 4 джоуля — величина очень небольшая: чтобы вскипятить полстакана воды, нужно выполнить работу в 10—20 тысяч джоулей.
Единица сопротивления — ом — тоже произвольная величина. Сама характеристика «сопротивление» говорит о том, насколько легко генератору создавать ток в данном проводнике (Т-8). Так вот, если под действием э.д.с. в 1 вольт в проводнике идет ток в 1 ампер, то сопротивление такого проводника принимается за единицу сопротивления — 1 ом. Если при той же э.д.с. ток меньше, значит, сопротивление больше одного ома, если ток больше, значит, сопротивление меньше ома. Например, если при э.д.с. 1 вольт ток в проводнике 10 ампер, то, значит, сопротивление проводника в десять раз меньше единичного, то есть составляет 0,1 ома. А если при э. д. с. 1 вольт ток всего 0,001 ампера, то сопротивление 1000 ом, или в 1 килоом.
В заключение знакомства с набором единиц, так сказать, первой необходимости, отметим, что все эти единицы имеют сокращенные обозначения, которыми в дальнейшем мы будем широко пользоваться. Вот эти обозначения: метр — м, килограмм — кг, секунда — с (иногда в нарушение правил для наглядности пишут сек), ньютон — Н, джоуль — Дж, ватт — Вт, кулон — К, вольт — В, ампер — А, ом — Ом.
Обратите внимание: названия единиц, которые произошли от собственных имен, при сокращении пишутся с большой буквы. Это дань уважения людям, чьи имена присвоены этим единицам измерения.

Читать следующую теорию
Вернуться на предыдущую

значёк